Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: Differential scanning calorimetry (DSC)

Total Papers Found: 27

High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene nanoplatelets

Polyactic acid (PLA)-micro hexagonal boron nitride (hBN)-graphene nanoplatelet (GNP) polymer composites were prepared, and the effects of varying filler contents on the thermal and mechanical properties of the polymer composites were investigated. It was determined that the addition of the GNPs resulted in ...

Author(s): , , ,

Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks

Four different paraffin-based nanocomposite phase change materials (PCMs) were prepared by dispersion of 20 v. % of graphene, multi-walled carbon nanotubes (MWCNTs), aluminum, or TiO2 nanoparticles into a paraffin matrix. It was found that the two carbon-based nanoparticles reduced the time required for melting and solidification of ...

Author(s): ,

Thermal transport, thermomechanical, and dielectric properties of chalcogenide Se98–xAg2Inx (x = 0, 2, 4, 6) system

The influence of In content in the Se98-xAg­2Inx (x = 0, 2, 4, 6) system of chalcogenide glasses on the physical properties of the glasses were investigated by the authors. The maximum thermal conductivity and thermal diffusivity value was observed for the sample containing 2 at. % In. The microhardness ...

Author(s): ,

Enhancement of physical properties of electroactive polyimide nanocomposites by addition of graphene nanosheets

The thermal imidization method was used to prepare an electroactive polyimide/graphene nanocomposite (EPGN) material membrane. It was determined that the composites that were formed had improved mechanical strength, thermal stability, and thermal conductivity, as well as an improved dielectric constant and a decreased gas ...

Author(s): , , , , , , , ,

Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets

A paraffin-based composite phase change material (PCM) was prepared by the addition of hexagonal boron nitride (h-BN) nanosheets to melted paraffin wax followed by vigorous stirring. The nanosheets were added in quantities ranging from 1 to 10 wt. %. A reference sample of pure paraffin was also prepared. ...

Author(s): , , , , , , , , ,