The thermal conductivities of paraffin-based composite phase change materials (PCMs) containing different types of graphene nanoparticles were determined using the transient plane source method. It was determined that the thermal conductivity was increased by the addition of the nanoparticles, and the enhancement was greater for composites containing larger, and stiffer nanoparticles....
Polyactic acid (PLA)-micro hexagonal boron nitride (hBN)-graphene nanoplatelet (GNP) polymer composites were prepared, and the effects of varying filler contents on the thermal and mechanical properties of the polymer composites were investigated. It was determined that the addition of the GNPs resulted in a decrease in thermal conductivity in comparison to a PLA-hBN composite unless the GNP:hBN ratio was 1:1, where the thermal conductivity was equal to that ...
The thermal conductivity and dynamic viscosity of Al2O3-ethylene glycol and TiO2-ethylene glycol nanofluids have been determined as a function of the nanoparticle volume fraction (from 1 to 3 %) and temperature. It was determined that the thermal conductivity increased with increasing temperature as well as with increasing particle volume fraction for both types of nanofluids, but increasing the particle volume fraction caused a more significant increase than increasing the temperature. ...
Four different paraffin-based nanocomposite phase change materials (PCMs) were prepared by dispersion of 20 v. % of graphene, multi-walled carbon nanotubes (MWCNTs), aluminum, or TiO2 nanoparticles into a paraffin matrix. It was found that the two carbon-based nanoparticles reduced the time required for melting and solidification of the PCM by a greater amount than the two other nanoparticles. The graphene-paraffin PCM was found to reduce the melt and re-solidification time by the ...
The thermal properties, as well as bulk density, and mass loss of alumina porcelain were determined as a function of firing temperature. It was found that after sintering at 1320 ºC, the thermal conductivity and thermal diffusivity increased by ~700% and ~400%, respectively....