The thermal conductivities of paraffin-based composite phase change materials (PCMs) containing different types of graphene nanoparticles were determined using the transient plane source method. It was determined that the thermal conductivity was increased by the addition of the nanoparticles, and the enhancement was greater for composites containing larger, and stiffer nanoparticles....
Polyactic acid (PLA)-micro hexagonal boron nitride (hBN)-graphene nanoplatelet (GNP) polymer composites were prepared, and the effects of varying filler contents on the thermal and mechanical properties of the polymer composites were investigated. It was determined that the addition of the GNPs resulted in a decrease in thermal conductivity in comparison to a PLA-hBN composite unless the GNP:hBN ratio was 1:1, where the thermal conductivity was equal to that ...
Poly(trimethylene terephthalate)-block-poly(tetramethylene oxide) (PTT-PMTO) copolymer-based nanocomposites containing a combination of single-walled carbon nanotubes (SWCNTs) and graphene nanoplatelets (GNPs) as carbon nanofillers were investigated to determine their thermal conductivities. Nanocomposites having a total carbon nanofiller concentration of 0.4 and 0.6 wt. % were preparared with varying amounts of each nanofiller, and the thermal conductivity was measured using the transient plane source (TPS) method. The dispersion of the nanofillers was observed by ...
The effects of silver nanowire size on the thermal conductivities of ethylene glycol-based nanofluids were investigated experimentally. The effects of altering the loading concentration of nanowires, and altering the temperature were also investigated. In addition to this, an investigation into the effects of the nanowire dimensions on the rheological properties of the nanofluids was also conducted. Theoretical models were then developed based on the experimental results....
The effective thermal conductivity and thermal diffusivity was measured for chalcogenide glass samples of the formulation Ge30-xSe70Sbx (x = 10, 15, 20, 25). It was found that both the effective thermal conductivity and thermal diffusivity were independent of temperature up to 160º C. After this point, both properties were found to increase with increasing temperature until they reached a maximum value at a point near the glass transition temperature of the glass. After reaching ...