Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: Chia-Jyi Liu

Total Papers Found: 22

Thermoelectric Properties of Ca3xDyxCo4O9+d with x = 0.00, 0.02, 0.05, and 0.10

The low-temperature thermoelectric properties of Ca3-xDyxCo4O9+delta systems (x = 0, 0.02, 0.05, and 0.10). It was determined that these systems produced positive thermopower, indicating that the dominant carriers were holes. The electrical resistivity and thermal conductivity were found to decrease with increasing Dy3+ content, and the thermopower ...

Author(s): , ,

Low-Temperature thermoelectric and magnetic characteristics of Ca2.9Bi0.1Co4−xFexO9+delta (0 < x < 0.10)

Thermoelectric materials are currently being researched as a source of energy in order to reduce carbon dioxide emissions. The efficiency of these materials depends on their Seebeck coefficient, electrical resistivity, and thermal conductivity, as well as the absolute temperature. Cobalt oxides (Ca3Co4O9+delta) ...

Author(s): , ,

High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2 Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering

A series of Bi(2-x)Sb(x)Te3 powders were prepared via hydrothermal methods by varying x (x=1.45, 1.50, 1.55, 1.56). These powders were then heavily characterized by XRD, EDS, ICP-AES, TEM, SEM and the TPS technique. A low thermal conductivity was desired, so as to give the ...

Author(s): , , ,

Thermoelectric properties of n-type Ca(1-x)Bi(x)Mn(1-y)Si(y)O(3-delta) (x = y = 0.00, 0.02, 0.03, 0.04, and 0.05) system

CaMnO3 has been proposed for use in thermoelectric materials, due to its favourable thermoelectric properties. In this article, the effect of doping using bismuth and silicon to replace calcium and manganese respectively has been studied. Important properties of the doped compounds measured include thermopower, thermal ...

Author(s): , , ,

Enhanced thermoelectric performance of compacted Bi0.5Sb1.5Te3 nanoplatelets with low thermal conductivity

A series of compacted Bi0.5Sb1.5Te3 nanoplatelets are synthesized using hydrothermal methods, followed by cold pressing and sintering at temperatures between 300°C and 380°C. A variety of thermal, mechanical and electrical analyses are then performed on the synthesized nanoplatelets including: TPS technique for thermal ...

Author(s): , , ,

Optimization and Analysis of Thermoelectric Properties of Unfilled Co1–x–yNixFeySb3 Synthesized via a Rapid Hydrothermal Procedure

A new application for the transient hot-wire technique for thermal conductivity measurements has been described. It is intended to provide an accurate means of implementation of the method to the determination of the thermal conductivity of solids exemplified by a standard reference ceramic material. Measurements ...

Author(s): , , , , ,