A series of Bi(2-x)Sb(x)Te3 powders were prepared via hydrothermal methods by varying x (x=1.45, 1.50, 1.55, 1.56). These powders were then heavily characterized by XRD, EDS, ICP-AES, TEM, SEM and the TPS technique. A low thermal conductivity was desired, so as to give the ...
CaMnO3 has been proposed for use in thermoelectric materials, due to its favourable thermoelectric properties. In this article, the effect of doping using bismuth and silicon to replace calcium and manganese respectively has been studied. Important properties of the doped compounds measured include thermopower, thermal ...
Vertically-aligned silicon nanowires (SiNWs) are investigated for their use as thermoelectric materials. Using a silver-induced electroless-etching method, SiNWs of varying lengths are prepared, which are expected to have lower thermal conductivities as compared to bulk silicon. A thermal constants analyzer is used to perform the ...
A series of compacted Bi0.5Sb1.5Te3 nanoplatelets are synthesized using hydrothermal methods, followed by cold pressing and sintering at temperatures between 300°C and 380°C. A variety of thermal, mechanical and electrical analyses are then performed on the synthesized nanoplatelets including: TPS technique for thermal ...
A 3D carbon nanotube (CNT) network is explored and how potassium or iodine doping can affect the thermoelectric properties of this network. Through in-situ nanoscaling, this CNT network was combined with polyaniline (PANI) and increased the thermoelectric performance of PANI while maintaining the flexible structure ...