Join us at the International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES).

Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: phase change materials

Total Papers Found: 96

Influence of the Presence and Amount of Metal Nanoparticles on the Thermal and Mechanical Properties of iPP/Soft Paraffin Wax Phase Change Materials for Thermal Energy Storage

Nanocomposite phase change materials (PCMs) were prepared by adding silver nanoparticles to isotactic polypropylene (iPP) and an iPP/paraffin wax phase change materials. The Ag nanoparticles were found to be well dispersed in both iPP and the iPP/wax composite, and filler agglomeration was found to increase with increasing filler content. The nanoparticles did not significantly affect the modulus of the iPP on its own, but when Ag and paraffin ...

Author(s):

Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

Graphite nano-platelets (GnPs) were dispersed in polyethylene glycol (PEG)/polymethyl methacrylate (PMMA) to form a PEG/PMMA/GnPs composite organic form-stable phase change material. The effects of the incorporation of the GnPs on the morphological, structural, thermal, and electrical properties of the composite were then assessed. The experimental results indicated that the incorporation of the GnPs into the polymer increased the thermal and electrical conductivities, and it was concluded that ...

Author(s): , , , ,

Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink

Two organic phase change materials (PCMs) were investigated to determine their effects on the thermal management capabilities of electronics. The thermo-physical properties of n-eicosane and 1-hexadecanol were determined experimentally, and the two PCMs were then added to unfinned, and finned heat sinks. It was determined that a PCM with a high melting point is able to increase the time of protection from overheating; however, it was also determined that if ...

Author(s): , , , , , , , , ,

Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials

The use of organic compounds as phase change materials (PCMs) is limited by the low thermal conductivity of these compounds. In this study, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were dispersed in n-octadecane to determine if this nanocomposite PCM would have a higher thermal conductivity than that of pure n-octadecane. The thermal conductivity of the nanocomposite PCMs was measured using the transient plane source (TPS) method at mass ...

Author(s): , ,

Thermal Conductivity Enhancement by using Nano-Material in Phase Change Material for Latent Heat Thermal Energy Storage Systems

Al2O3, TiO2 nanoparticles, and carbon nanotubes were added to Iraqi paraffin wax in varying quantities to determine the optimum filler content for the enhancement of thermal conductivity. The thermal conductivity was enhanced by 65 and 40% for samples containing 5 wt. % of Al2O3 and TiO2 nanoparticles, respectively. It was concluded that the addition of these nanoparticles to paraffin wax enhanced the thermal conductivity of the phase change material without sacrificing its ...

Author(s): , ,