This paper focused on determining the thermal conductivity of multiwalled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) that were dispersed throughout n-octadecane as phase change materials (PCMs). The Thermal Constants Analyzer TPS measured the thermal conductivity of the n-octadecane samples at solid and liquid phases ...
A composite PCM was prepared from n-octadecane and mesoporous silica (MPSiO2) nanoparticles. The nanoparticles were added in quantities ranging from 1 wt. % to 5 wt. %, and the thermal conductivity of each composite sample was determined as a function of temperature. The most significant enhancement in thermal conductivity ...
The use of organic compounds as phase change materials (PCMs) is limited by the low thermal conductivity of these compounds. In this study, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were dispersed in n-octadecane to determine if this nanocomposite PCM would have a higher ...
The thermal and rheological properties of n-octadecane, a phase change material, with dispersed TiO2 nanoparticles were investigated at varying temperatures. The properties were investigated in both the solid and liquid phases, with varying mass fractions of TiO2 nanoparticles. The thermal conductivity was found to be ...
The authors have developed a model for the estimation of how a nanofluid will work as a coolant without having to perform a number of experiments. The nanofluids used in the study were four water based metallic oxides. These nanofluids were compared to water in ...