Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: Fillers

Total Papers Found: 93

Improved Thermal Conductivity of Poly(trimethylene terephthalate-block-poly(tetramethylene oxide) Based Nanocomposites Containing Hybrid Single-Walled Carbon Nanotubes/Graphene Nanoplatelets Fillers

Poly(trimethylene terephthalate)-block-poly(tetramethylene oxide) (PTT-PMTO) copolymer-based nanocomposites containing a combination of single-walled carbon nanotubes (SWCNTs) and graphene nanoplatelets (GNPs) as carbon nanofillers were investigated to determine their thermal conductivities. Nanocomposites having a total carbon nanofiller concentration of 0.4 and 0.6 wt. % were preparared with varying ...

Author(s): , , , , ,

Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials

The thermal conductivities of four composite paraffin phase change materials (PCMs) containing embedded multi-walled carbon nanotubes (MWCNTs) with varying dimensions were determined. The goals of this study were to investigate the interfacial thermal resistance between two MWCNTs, and to investigate the ballistic and diffusive components ...

Author(s): ,

Graphene-Enhanced Phase Change Materials for Thermal Management of Battery Packs

The potential of graphene and few-layer graphene to be used as fillers in a paraffin wax phase change material (PCM) was evaluated. The goal was to prepare a composite PCM with a higher thermal conductivity than the pure paraffin wax. The ability of the composite ...

Author(s): ,

High-electrical-resistivity thermally-conductive phase change materials prepared by adding nanographitic fillers into paraffin

Pristine and modified exfoliated graphite nanoplatelets (xGnPs and M-xGnPs, respectively) were dispersed into a paraffin wax phase change material (PCM) in an effort to raise the thermal conductivity of the PCM. The addition of pure xGnPs would decrease the electrical resistivity of the composite PCM, ...

Author(s): , , , , ,

Study on effective thermal conductivity of zinc sulphide/poly(methyl methacrylate) nanocomposites

Zinc sulfide nanoparticles were embedded in a poly(methyl methacrylate) matrix to prepare a  nanocomposite polymer with a higher thermal conductivity than the pure polymer. It was determined by TEM that at a low concentration of filler particles, the particles are uniformly dispersed throughout the ...

Author(s): , ,