Join us at the International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES).

Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: Fillers

Total Papers Found: 92

Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials

The thermal conductivities of four composite paraffin phase change materials (PCMs) containing embedded multi-walled carbon nanotubes (MWCNTs) with varying dimensions were determined. The goals of this study were to investigate the interfacial thermal resistance between two MWCNTs, and to investigate the ballistic and diffusive components of the thermal resistance at the interface. It was found that the thermal conductivity of the composite PCMs increased with the diameter of the MWCNT ...

Author(s): ,

Graphene-Enhanced Phase Change Materials for Thermal Management of Battery Packs

The potential of graphene and few-layer graphene to be used as fillers in a paraffin wax phase change material (PCM) was evaluated. The goal was to prepare a composite PCM with a higher thermal conductivity than the pure paraffin wax. The ability of the composite PCM to reduce temperature variation in lithium ion batteries was also evaluated over 10 charging – discharging cycles. It was found that the ...

Author(s): ,

High-electrical-resistivity thermally-conductive phase change materials prepared by adding nanographitic fillers into paraffin

Pristine and modified exfoliated graphite nanoplatelets (xGnPs and M-xGnPs, respectively) were dispersed into a paraffin wax phase change material (PCM) in an effort to raise the thermal conductivity of the PCM. The addition of pure xGnPs would decrease the electrical resistivity of the composite PCM, and thus its potential for use in electrical devices would be limited due to safety concerns. To eliminate this issue, the M-xGnPs were prepared. Samples ...

Author(s): , , , , ,

Study on effective thermal conductivity of zinc sulphide/poly(methyl methacrylate) nanocomposites

Zinc sulfide nanoparticles were embedded in a poly(methyl methacrylate) matrix to prepare a  nanocomposite polymer with a higher thermal conductivity than the pure polymer. It was determined by TEM that at a low concentration of filler particles, the particles are uniformly dispersed throughout the matrix; however, at higher concentrations, agglomeration of the filler particles occurs. The effective thermal conductivity for all samples was found to increase with increasing temperature ...

Author(s): , ,

Influence of CdS Nano Additives on the Thermal Conductivity of Poly(vinyl chloride)/CdS Nanocomposites 

CdS nanoparticles were dispersed in varying quantities into a PVC matrix and the effective thermal conductivities of the produced nanocomposites were investigated at temperatures from 25 to 110C. It was determined that the dispersion of the nanoparticles in PVC caused an increase in thermal conductivity up to 2 wt. % filler concentration when compared to that of pure PVC. When more than 2 wt. % of filler was added to the PVC matrix, the thermal ...

Author(s): ,