Join us at the International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES).

Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: XRD

Total Papers Found: 51

Thermoelectric properties of Ca3-xEuxCo3.95Ga0.05O9+delta (0 < x < 0.10)

The partial replacement of Ca2+ ions with Eu3+ in the Ca3Co3.95Ga0.05O9+delta system to give polycrystalline samples of Ca3-xEuxCo3.95Ga0.05O9+delta (x = 0.00, 0.02, and 0.10) was performed in order to assess the effect that the dopant had on thermoelectric properties of this system. It was found that the electrical resistivity and thermopower increased with increasing Eu3+ content, and the thermal conductivity decreased. The highest thermoelectric figure of ...

Author(s): , ,

Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets

A paraffin-based composite phase change material (PCM) was prepared by the addition of hexagonal boron nitride (h-BN) nanosheets to melted paraffin wax followed by vigorous stirring. The nanosheets were added in quantities ranging from 1 to 10 wt. %. A reference sample of pure paraffin was also prepared. It was determined that the addition of h-BN nanosheets resulted in an increase in thermal conductivity and that the melting and solidification rates were also ...

Author(s): , , , , , , , , ,

Percolation based enhancement in effective thermal conductivity of HDPE/LBSMO composites

La0.7Ba0.15Sr0.15MnO3 (LBSMO) powder was prepared and mixed with HDPE powder in volume fractions from 0 to 0.30. These powders were then molded into pellet form in a hot press and cooled to room temperature. The thermal conductivity of the resulting composite was then measured using the transient plane source method. It was found that the thermal conductivity of the composite samples increased with increasing LBSMO content up to an ...

Author(s): , ,

Thermoelectric and magnetic properties of Ca3Co4–xCuxO9 + delta with x = 0.00, 0.05, 0.07, 0.10 and 0.15

The thermoelectric and magnetic properties of the Ca3Co4-xCuxO9+delta system where x = 0, 0.05, 0.07, 0.10, and 0.15 were investigated as materials of this type have potential for use in thermoelectric generators. The goal of this work was to identify the sample in this system having the highest thermoelectric figure of merit. To accomplish this, a high thermopower, a high thermal voltage, a low resistivity, and a low thermal conductivity were required. It ...

Author(s): , ,