Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: SEM

Total Papers Found: 101

Insulation rigid and elastic foams based on albumin

This article discusses the creation and characterization of albumin based rigid and elastic foams. These foams were created using formaldehyde as the hardener for the protein, while camphor was used as the plasticizer. Crosslinking was carried out using a traditional or microwave oven. Samples differed ...

Author(s): , , , , , ,

Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite

This article discussed the creation of phase change composite materials using molten binary salts and expanded graphite (EG). Three different salts were used, LiNO3–KCl, LiNO3–NaNO3 and LiNO3–NaCl. The amount of salt in the composites varied between 77.8% and 81.5%. The thermal conductivity of the ...

Author(s): , , , , ,

Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites

Rubber carbon black (CB)/rubbery epoxy (RE) and CB/silicone composites with different types, loadings, and silane functionalization of carbon black were prepared. These composites were investigated for their electrical conductivities, and their mechanical properties. The thermal conductivity of each composite was also determined using ...

Author(s): , , , ,

Thermal Characterization of Lauric–Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials

Expanded graphite (EG) was added to lauric acid (LA)-stearic acid (SA) phase change materials to enhance their thermal conductivities. The PCMs were prepared in varying mass fractions of LA and SA, and 10 wt. % of EG was added. The phase change temperature and phase change ...

Author(s): , , ,

Preparation of low-density polyethylene/low-temperature expandable graphite composites with high thermal conductivity by an in situ expansion melt blending process

Low-temperature expandable graphite (LTEG) was blended into low-density polyethylene (LDPE) to prepare composite materials with an enhanced thermal conductivity in comparison to pure LDPE. The thermal conductivity of a composite containing 60 wt. % LTEG was found to be increased by a factor of 23 in comparison to ...

Author(s): , , ,