Join us at the International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES).

Thermal Conductivity Paper Database

Search academic papers below:

Recommended Papers for: Figure of Merit

Total Papers Found: 9

Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe 

This article investigates the effect of aluminum doping on the thermal conductivity and other thermoelectric properties of nanostructured Zn1•XAlXTe (0 ≤ X ≤ 0.15) for a temperature range of 300 K – 600 K. The thermal conductivity was measured using the transient plane source (TPS) technique by a thermal constants analyzer. It was found that with increasing doping of aluminum, the thermal conductivity decreased, and with increasing temperature thermal conductivity also decreased. The decreasing of thermal ...

Author(s): , , , ,

High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2 Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering

A series of Bi(2-x)Sb(x)Te3 powders were prepared via hydrothermal methods by varying x (x=1.45, 1.50, 1.55, 1.56). These powders were then heavily characterized by XRD, EDS, ICP-AES, TEM, SEM and the TPS technique. A low thermal conductivity was desired, so as to give the highest thermoelectric figure of merit (ZT). It was determined that the highest figure of merit was obtained when x=1.55, which resulted in a value of 1.65 ...

Author(s): , , ,

Thermoelectric properties of n-type Ca(1-x)Bi(x)Mn(1-y)Si(y)O(3-delta) (x = y = 0.00, 0.02, 0.03, 0.04, and 0.05) system

CaMnO3 has been proposed for use in thermoelectric materials, due to its favourable thermoelectric properties. In this article, the effect of doping using bismuth and silicon to replace calcium and manganese respectively has been studied. Important properties of the doped compounds measured include thermopower, thermal conductivity, and electrical resistance. Different amounts of dopant are used, and it was determined that the compound Ca0.98Bi0.02Mn0.98Si0.02O3 has the highest ...

Author(s): , , ,

Enhanced thermoelectric performance of compacted Bi0.5Sb1.5Te3 nanoplatelets with low thermal conductivity

A series of compacted Bi0.5Sb1.5Te3 nanoplatelets are synthesized using hydrothermal methods, followed by cold pressing and sintering at temperatures between 300°C and 380°C. A variety of thermal, mechanical and electrical analyses are then performed on the synthesized nanoplatelets including: TPS technique for thermal conductivity, SEM/TEM/AFM to elucidate the mechanical and physical properties of the nanoplatelets, and the Oxford closed cycle cooler cryostat for measurement of electrical ...

Author(s): , , ,