Raw multi-walled carbon nanotubes (r-MWCNTs) and Cu nanoparticles are dispersed in an epoxy matrix in varying quantities to create composite polymers with enhanced thermal conductivities. A study was then conducted to determine if the boundary thermal contact resistance could be reduced by increasing the thermal conductivity. The boundary thermal contact resistance was found to be approximately constant across all samples containing the copper nanoparticles. The boundary thermal contact resistance was ...
Four different paraffin-based nanocomposite phase change materials (PCMs) were prepared by dispersion of 20 v. % of graphene, multi-walled carbon nanotubes (MWCNTs), aluminum, or TiO2 nanoparticles into a paraffin matrix. It was found that the two carbon-based nanoparticles reduced the time required for melting and solidification of the PCM by a greater amount than the two other nanoparticles. The graphene-paraffin PCM was found to reduce the melt and re-solidification time by the ...
Poly(trimethylene terephthalate)-block-poly(tetramethylene oxide) (PTT-PMTO) copolymer-based nanocomposites containing a combination of single-walled carbon nanotubes (SWCNTs) and graphene nanoplatelets (GNPs) as carbon nanofillers were investigated to determine their thermal conductivities. Nanocomposites having a total carbon nanofiller concentration of 0.4 and 0.6 wt. % were preparared with varying amounts of each nanofiller, and the thermal conductivity was measured using the transient plane source (TPS) method. The dispersion of the nanofillers was observed by ...
The thermal conductivities of four composite paraffin phase change materials (PCMs) containing embedded multi-walled carbon nanotubes (MWCNTs) with varying dimensions were determined. The goals of this study were to investigate the interfacial thermal resistance between two MWCNTs, and to investigate the ballistic and diffusive components of the thermal resistance at the interface. It was found that the thermal conductivity of the composite PCMs increased with the diameter of the MWCNT ...
Polytetramethylene ether glycol (PTMEG) was used to functionalize multi-walled carbon nanotube (MWNT) by grafting to produce MWNT-g-PTMEG. These functionalized nanotubes were then dispersed in thermoplastic polyurethane (TPU) to form a TPU/MWNT nanocomposite. It was found that the functionalization resulted in improved dispersion of the nanotubes in the TPU material. The tensile strength and elongation at break of the nanocomposite were also enhanced by the addition of the nanotubes in ...