The application of carbon nanotubes (CNT) to thermal management devices has recently drawn much attention. This study produced and examined metal-carbon nanotube composites for use in highly conductive yet stable thermal management materials. The structural and thermophysical properties of metal-CNT composites were examined, including the measurement of thermal conductivity using the Thermal Constants Analyzer TPS transient plane source (TPS) method. Results showed that generally, inverse relationships were observed between thermal ...
Many conventional fluids have low thermal conductivities. Adding thermally conductive nanometer-sized particles to these fluids transforms them into thermally conductive nanofluids. In this study, the thermal conductivity of aqueous alumina and multi-walled carbon nanotube (MWCNT) nanofluids was measured using the transient plane source (TPS) method with a thermal constants analyzer TPS. During each trial, 0.015 W of power were administered to each sample for two seconds. Results of the experiment showed ...
Many conventional fluids have low thermal conductivities. Adding thermally conductive nanometer-sized particles to these fluids transforms them into thermally conductive nanofluids that can be used for refrigeration and air conditioning systems. In this paper, the transient plane source (TPS) method is used to explore the thermal conductivity of multi-walled carbon nanotube (MWCNT) nanofluids in a helically coiled, double-pipe heat exchanger. The thermal conductivities of the MWCNT nanofluids were measured using ...
Multi walled carbon nanotubes (MWCNTs) and carbonized resorcinol-formaldehyde (RF) resin were used to create a conducting aerogel with a high electrical conductivity and Seebeck coefficient but a low thermal conductivity. The addition of the MWCNTs caused the figure of merit (ZT) for the aerogel to increase by two orders of magnitude. The researchers determined that it was possibly to control the electrical conductivity, thermal conductivity, and Seebeck coefficient independently of ...
Numerical models for the calculation of thermal conductivity and rheology behavior of alumina and multi-walled carbon nanotube (MWCNT) nanofluids were evaluated by determining these properties experimentally and comparing the results to the models. The thermal conductivity was measured by the transient plane source method, and the dynamic viscosity was determined using a rotational rheometer. A new model was then developed for these nanofluids, including the effects of interfacial thermal resistance. ...