Low-density microcellular non-isocyanate polyurethane (NIPU) foams were prepared using biological compounds and carbon dioxide. The morphology of these foams was investigated by scanning electron microscopy (SEM), and the thermal conductivity was determined using the transient plane source (TPS) method. It was concluded that a study ...
Graphite nano-platelets (GnPs) were dispersed in polyethylene glycol (PEG)/polymethyl methacrylate (PMMA) to form a PEG/PMMA/GnPs composite organic form-stable phase change material. The effects of the incorporation of the GnPs on the morphological, structural, thermal, and electrical properties of the composite were then ...
Composite phase change materials were prepared using stearic acid, coffee grounds, and graphite. The coffee grounds were used as a supporting material for the stearic acid, and the graphite was added in an effort to enhance the thermal conductivity of the composite. The composites were ...
The authors prepared PMMA/clay composites by the in situ bulk polymerization method. The prepared composites were characterized by FT-IR, WAXRD, SEM, TEM, DMA and the transient plane source (TPS) technique to measure thermal conductivity. Not only were the thermal properties of the composites studied, ...
Sebacic acid (SA) can be absorbed into the pores of expanded graphite (EG) to form a SA/EG composite phase change material (PCM). There is no chemical interaction between the SA and EG, they are merely integrated. The optimal amount of SA was found to ...