Thermoelectric materials are currently being researched as a source of energy in order to reduce carbon dioxide emissions. The efficiency of these materials depends on their Seebeck coefficient, electrical resistivity, and thermal conductivity, as well as the absolute temperature. Cobalt oxides (Ca3Co4O9+delta) ...
Samples of Ca0.98RE0.02MnO3- delta (RE = Sm, Gd, and Dy) were tested for their thermoelectric and magnetic properties. It was determined that 2% doping at the Ca site with rare-earth elements reduced the electrical resistivity and thermal conductivity in comparison to the undoped material....
The low-temperature thermoelectric properties of Ca3-xDyxCo4O9+delta systems (x = 0, 0.02, 0.05, and 0.10). It was determined that these systems produced positive thermopower, indicating that the dominant carriers were holes. The electrical resistivity and thermal conductivity were found to decrease with increasing Dy3+ content, and the thermopower ...
The authors present a method of producing Cu2CdSnSe4 quaternary nanocrystals using a colloidal synthesis route that could be used for future industrial synthesis. The nanocrystals prepared showed great potential for use as a thermoelectric material due to their high thermoelectric figure of merit (up ...
Thermoelectric materials are currently being researched as a source of energy in order to reduce carbon dioxide emissions. The efficiency of these materials depends on their Seebeck coefficient, electrical resistivity, and thermal conductivity, as well as the absolute temperature. Cobalt oxides (Ca3Co4O9+delta) ...