Join us at the International Thermal Conductivity Conference (ITCC) and the International Thermal Expansion Symposium (ITES).

Thermal Conductivity Paper Database

Thermtest has compiled the world’s largest thermal conductivity academic paper database. The research paper database is dedicated to the Transient Plane Source (TPS), Transient Hot Wire (THW), Transient Line Source (TLS), and Guarded Heat Flow Meter (GHFM). These techniques offer a wide range of applications, which is represented by more than 1000 papers represented in the database! Search academic papers below:

Recommended Papers for: thermal interface

Total Papers Found: 30

Optimization of cooling time for measuring Thermal properties of electronic materials using the transient plane source technique

The effects of cooling time on the reproducibility and accuracy of thermal conductivity measurements made using a Thermal Constants Analyzer were evaluated. Selected metal alloys and silicone based electronic interface materials were used for the testing. Cooling times of 30, 15, 10, 5, and 1 minute between measurements were selected, and three measurements were made for each cooling time. These tests were also performed at temperatures of 25, 50, and 70ºC to determine if sample temperature had ...

Author(s): , ,

Thermal interface materials based on carbon nanotubes and their thermal characterization

The effects of using different fillers and the effects of filler content and particle size on the thermal properties of thermal interface materials were investigated. The most prominent enhancement in thermal conductivity was observed for samples containing carbon nanotubes and graphite. The filler particle size was also found to significantly affect the thermal conductivity, as smaller fillers resulted in a higher thermal conductivity. The article also describes two sample holders ...

Author(s): , , , , ,

Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites

The effects of intrinsic thermal conductivity, carbon filler geometry, and interface thermal resistance on the effective thermal conductivity of polymer composites were investigated. It was found that the length of carbon fillers and the interface thermal resistance were the dominant factors in determining the effective thermal conductivity of the composites. The authors suggest that the most thermally conductive polymer composite would contain long carbon nanofibers that have undergone surface functionalization ...

Author(s): , , , ,

Graphite nanoplatelet/silicone composites for thermal interface applications

Graphite nanoplatelets were dispersed in varying quantities into a silicone matrix to form composite materials with higher thermal conductivities than the pure silicone matrix without sacrificing mechanical properties. It was found that the thermal conductivities of the composites increased with increasing GNP content as well as with increasing GNP particle size. The composites were found to be effectively electrically insulating, and it was found that the addition of GNP did ...

Author(s): , ,

Thermal Conductivity of Single-Wall Carbon Nanotube Dispersions: Role of Interfacial Effects

The thermal transport properties of nanofluids containing single-walled carbon nanotubes (SWCNTs) in ethylene glycol and (poly)-alpha olefins (PAO) were investigated. It was found that the addition of SWCNTs enhanced the thermal conductivity of each of the two base fluids, with this enhancement increasing as the loading of SWCNTs increased. The authors were able to create an accurate predictive model of the thermal conductivity for these nanofluids by characterizing the ...

Author(s): , , , , , ,