Thermal Conductivity Paper Database Balandin

Professor Alexander A. Balandin

View Research Gate Profile

Applied Physics from the Moscow Institute of Physics and Technology (MIPT), Russia. He received his PhD (1997) degree in Electrical Engineering from the University of Notre Dame, USA. In 1999 he joined the Department of Electrical and Computer Engineering, UC Riverside, where he is presently UC Presidential Chair Professor of Electrical Engineering, Director of the Nano-Device Laboratory (NDL), Director of the Phonon Optimized Engineered Materials (POEM) Center, Associate Director of DOE EFRC Spins and Heat in Nanoscale Electronic Systems (SHINES) and Founding Chair of Materials Science and Engineering (MS&E) Program. Professor Balandin’s research interests are in the area of advanced materials, nanostructures and devices for electronic applications. He is recognized as a pioneer of the graphene thermal field and one of the leaders of the phonon engineering field. In 2008, Professor Balandin experimentally discovered the extremely high thermal conductivity of graphene and explained it theoretically. He also proposed a range of thermal management applications of graphene – from thermal interface materials to graphene-based lateral heat spreaders. Professor Balandin is a recipient of The MRS Medal (2013) and IEEE Pioneer of Nanotechnology Award (2011) for his graphene, phonon engineering and nanotechnology research. He was also recognized by the ONR Young Investigator Award, NSF CAREER Award and Merrill Lynch Innovation Award. He is elected Fellow of MRS, APS, IEEE, OSA, SPIE and AAAS. He published ~200 journal papers (h-index: 69, total citations: 24,500). He presently serves as Deputy Editor-in-Chief of Applied Physics Letters for area of Nanoscale Science and Technology.


Most Cited Thermal Conductivity Works:

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries
Journal of Power Sources, 248, (2014) 37-43.
P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria and A. A. Balandin
Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance
Applied Physics Letters 97, 133117 (2010)
V. Goyal, D. Teweldebrhan, and A. A. Balandin


Selection of Work by Prof. Alexander A. Balandin

Thermal Conductivity of Nitrogenated Ultrananocrystalline Diamond films on Silicon
Journal of Applied Physics, 103 (2008).
M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich and A. A. Balandin.
Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia 
Journal of Applied Physics, 106: 113507 (2009).
S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay and A. A. Balandin. 2009.
Thermal Properties of Graphene: Applications in Thermal Interface Materials 
ECS Transactions, 35(3): 193-199 (2011).
K. M. Shahil, V. Goyal and A. Balandin.
Properties of graphene produced by the high pressure-high temperature growth process 
Micro & Nano Letters, 3(1): 29-34 (2008).
F. Parvizi, D. Teweldebrhan, S. Ghosh, I. Calizo, A. A. Balandin, H. Zhu and R. Abbaschian
The Heat is On: Graphene Applications 
Nanotechnology Magazine, 5(4): 15-19 (2011).
F. Parvizi, D. Teweldebrhan, S. Ghosh, I. Calizo, A. A. Balandin, H. Zhu, R. Abbaschian and A. A. Balandin.
Thermal properties of graphene and nanostructured carbon materials 
Nature Materials, 10: 569 – 581 (2011).
A. A. Balandin.
Graphene – multilayer graphene nanocomposites as highly efficient thermal interface materials 
Nano Letters, 12: 861 (2012).
K.M.F. Shahil and A.A. Balandin.
Thermal conductivity of graphene laminate 
Nano Letters, 14: 5155 (2014).
H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D. L. Nika, K. S. Novoselov and A. A. Balandin.
Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature 
Advanced Functional Materials, 25: 4664 (2015).
J. D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A. I. Cocemasov, D. L. Nika and A. A. Balandin.
Excellent thermal properties of graphene and prospects of graphene’s applications in thermal management 
Advancing Microelectronics Magazine, 38(6): (2011).
A. A. Balandin.
Chill Out: New Materials and Designs Can Keep Chips Cool 
Invited feature article, IEEE Spectrum, 29: October issue (2009).
A. A. Balandin.
A comparative analysis of Ag and Cu heat sink layers in L10-FePt films for heat-assisted magnetic recording 
Journal of Applied Physics, 109: 07B763 (2011).
R. Fernandez, D. Teweldebrhan, C. Zhang, A.A. Balandin and S. Khizroev.
Heat conduction in graphene: Experimental study and theoretical interpretation 
New Journal of Physics, 11: 095012 (2009).
S. Ghosh, D.L. Nika, E.P. Pokatilov and A.A. Balandin.
Graphene quilts for thermal management of high-power GaN transistors 
Nature Communications, 3: 827 (2012).
Z. Yan, G. Liu, J.M. Khan and A.A. Balandin.
Reduced thermal resistance of silicon – synthetic diamond composite substrates at elevated temperatures 
Applied Physics Letters, 97: 031904 (2010).
V. Goyal, S. Subrina, D.L. Nika and A.A. Balandin.
Thermal properties of graphene – copper – graphene heterogeneous films 
Nano Letters, 14: 1497 (2014).
P. Goli, H. Ning, X. Li, C.Y. Lu, K. S. Novoselov and A. A. Balandin.
Graphene-on-diamond devices with increased current-carrying capacity: Carbon sp2-on-sp3 technology 
Nano Letters, 12: 1603 (2012).
J. Yu, G. Liu, A.V. Sumant, V. Goyal and A.A. Balandin.
Thermal conductivity of isotopically modified graphene 
Nature Materials, 11: 203 (2012).
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin and R.S. Ruoff.
Superior thermal conductivity of single-layer graphene 
Nano Letters, 8: 902 (2008).
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau.
Investigation of thermal crosstalk between SOI FETs by the sub-threshold sensing technique 
IEEE Trans on Electron Devices, 55: 1733 (2008).
M. Shamsa, P.M. Solomon, K.A. Jenkins, A.A. Balandin and W. Haensch.
Thermal conductivity of ultrathin tetrahedral amorphous carbon films 
Applied Physics Letters, 93: 043115 (2008).
A.A. Balandin, M. Shamsa, W.L. Liu, C. Casiraghi and A.C. Ferrari
Near-field optical transducer for heat-assisted magnetic recording for beyond 10-Tbit/in2 densities 
J. Nanoelectronics and Optoelectronics, 3: 44 (2008).
R. Ikkawi, N. Amos, A. Lavrenov, A. Krichevsky, D. Teweldebrhan, S. Ghosh, A.A. Balandin, D. Litvinov and S. Khizroev.
Thermal conductivity of nitrogeneated ultrananocrystalline diamond films on silicon 
J. Applied Physics, 103: 083538 (2008).
M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich and A.A. Balandin.
Dimensional crossover of thermal transport in few-layer graphene 
Nature Materials, 9: 555 (2010).
S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau and A.A. Balandin.
Thermal conductivity of twisted bilayer graphene 
Nanoscale, 6: 13402 (2014).
H. Li, H. Ying, X. Chen, D. L. Nika, A. I. Cocemasov, W. Cai, A. A. Balandin and S. Chen.
Thermal properties of graphene and few-layer graphene: applications in electronics 
IET Circuits, Devices and Systems, 9: 4 (2015).
Z. Yan, D. L. Nika and A. A. Balandin.
Graphene thermal properties: Applications in thermal management and energy storage 
Applied Sciences, 4: 525 (2014).
J. D. Renteria, D. L. Nika and A. A. Balandin